We supply turn–key shielded rooms and anechoic–chambers acc. to IEC/EN/ISO/MIL and CISPR–standards, including immunity and emission test systems, if required.
Our RF-shielded rooms and anechoic chambers are designed as a modular concept. This means that we use standardized parts, which assure a maximum of flexibility in view of the possible dimensions. The various shielding components are matched in a way that variations of length, width and height as well as lateral offsets may be realized without any problem during later modifications. In order to use the maximum available space of the existing installation area, special adjusting modules are available which allow the realization of almost any dimensions requested. In the normal configuration, the individual shielding modules are bolted from the inside so that they can be installed close to the walls of the building. If required, the panels can also be bolted from outside (e.g. when chambers must be attached to each other). The panels are made of galvanized sheet steel with a thickness of 2.0mm. The sheet steel is double-edged in order to achieve two things: self-supporting stability and assembly by screwing. The corners of the individual panels are welded and spray-galvanized. The individual shielding panels are bolted every 75mm, with a wire mesh gasket inserted into the gap. The small screwing distance as well as the precise tightening of the screws with predefined torque guarantees long life shielding attenuation characteristics. All chambers are self-supporting up to a width, length and height of 3.0m without any additional supporting being necessary. Beyond these dimensions, additional steel supports (beams, columns) are installed on the outside to stabilize the chamber.
Sliding doors / Gates:

A considerable advantage of sliding doors/gates is the fact that pyramid absorbers up to a length of 2.5m may be installed on the door leaves directly. In this case, the opening procedure of the sliding doors is performed in two steps as follows:

a) Disengaging from the contact spring system and reverse movement over the full length of the pyramid absorbers

b) Lateral movement of the door leaf to the left or right until the passage is completely opened;

For automatic operation, electric/pneumatic controls with a safety circuit can be delivered. For the bridging of the door step, several automated ramp systems are available. If the chamber can be placed into a pit, it is also possible to choose a solution without doorstep.

Shielded doors and gates:
The following door types are available:

- hinged doors (single-leaf and double-leaf)
- sliding doors / gates
- customized solutions

In addition to our standardized models all doors/gates are available in customized dimensions according to our customers’ individual requirements. Depending on the size of the door the closing procedure is supported by either a mechanic lever mechanism or by a pneumatic drive. A pneumatic latching system can be offered for every door upon request. It is always included in doors that are wider than 1.2m.

Special attention must be drawn on the RF-shielded contact between door leaf and door frame. To assure a good electrical connection we are using copper beryllium contact springs, which are pressed onto opposite contact surfaces during the closing procedure. These highly flexible springs, which are installed on the circumference of the door frame, are provided with a holding clip which latches onto a groove in the supporting material. This permits an easy exchange of these wearing parts without special tools and assures a good electrical and RF proof contact. The doors are provided as a standard with three rows of contact springs on all sides. All bright surfaces are protected against corrosion by hot galvanizing.

The doors are equipped with switching contacts, which can be used to switch off the transmitting equipment when a door is opened (interlock switching).

Installation of RF-absorbers on doors/gates directly:

All Frankonia doors/gates are designed strong enough for installation of ferrite absorbers as well as of pyramid absorbers directly on the door leaves. In most cases, separate mobile absorber walls are dispensable. If pyramid absorbers with a larger size (>30cm) shall be installed, sliding doors must be used.

Requirement regarding the place of installation

Since the floor shielding panels are installed flat on the floor of the building, the max. unevenness of the floor must not exceed ±5mm, measured across a length of 5.0m. All deviations above this value must be considered before installation of the chamber, e.g. compensated by installation of a floating floor. If the floor of the building is not dry enough, the chamber must be protected against rising humidity (e.g. rubber membrane also used for garden ponds etc.). The mains power supply of the chamber will be realized through power line filters according to customers’ specification (current/voltage). The electrical earth connection point must be provided by the customer, with a value of max. 0.5 Ω and wire cross section of at least 16mm².

Installation of RF-absorbers on doors/gates directly:

All Frankonia doors/gates are designed strong enough for installation of ferrite absorbers as well as of pyramid absorbers directly on the door leaves. In most cases, separate mobile absorber walls are dispensable. If pyramid absorbers with a larger size (>30cm) shall be installed, sliding doors must be used.

Standard doors:

<table>
<thead>
<tr>
<th>Type</th>
<th>Single-leaf doors (manual or pneumatical latching)</th>
<th>Contact spring rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD 1</td>
<td>938 x 1,968</td>
<td>3</td>
</tr>
<tr>
<td>SD 3</td>
<td>1,238 x 1,968</td>
<td>3</td>
</tr>
<tr>
<td>SD 3</td>
<td>938 x 2,118</td>
<td>3</td>
</tr>
<tr>
<td>SD 3</td>
<td>1,238 x 2,118</td>
<td>3</td>
</tr>
<tr>
<td>SD 3</td>
<td>1,538 x 2,118</td>
<td>3</td>
</tr>
<tr>
<td>SD 3</td>
<td>max. 1,988 x 2,568</td>
<td>3</td>
</tr>
</tbody>
</table>

Double-leaf doors:

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard dimensions (width x height):</th>
<th>Contact spring rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD 1</td>
<td>2,138 x 2,118 (manual latching)</td>
<td>3</td>
</tr>
<tr>
<td>SD 1</td>
<td>3,038 x 3,018 (pneumatical latching)</td>
<td>3</td>
</tr>
</tbody>
</table>

Sliding doors (pneumatical latching, with following ramp):

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard dimensions (width x height):</th>
<th>Contact spring rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD 3</td>
<td>938 x 1,968</td>
<td>3</td>
</tr>
<tr>
<td>SD 3</td>
<td>1,238 x 1,968</td>
<td>3</td>
</tr>
<tr>
<td>SD 3</td>
<td>1,528 x 1,968</td>
<td>3</td>
</tr>
<tr>
<td>SD 3</td>
<td>max. 1,988 x 2,568</td>
<td>3</td>
</tr>
</tbody>
</table>

Sliding doors / gates (full-automatic operation):

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard dimensions (width x height):</th>
<th>Contact spring rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>1,613 – 2,138 x 2,118 – 4,143</td>
<td>3</td>
</tr>
<tr>
<td>Type 2</td>
<td>2,213 – 2,738 x 2,118 – 4,143</td>
<td>3</td>
</tr>
<tr>
<td>Type 3</td>
<td>2,813 – 3,563 x 2,793 – 5,718</td>
<td>3</td>
</tr>
<tr>
<td>Type 4</td>
<td>3,638 – 4,088 x 2,793 – 5,718</td>
<td>3</td>
</tr>
</tbody>
</table>

Customized versions are available on request.
Ventilation & Feed-Throughs

Ventilation / Air Conditioning

Ventilation / air conditioning of shielded rooms is in principle realized by so-called honeycomb inserts. The diameter and the length of the individual honeycomb openings depend on the maximum usable frequency of the chamber. The standard configuration of our honeycombs is for a frequency range from 10kHz to 18GHz. For smaller rooms, and if the surrounding room is well ventilated, a diagonal installation of the honeycombs will provide sufficient ventilation. For larger chambers, additional fans with adjustable speed can be installed in front of the honeycombs using connecting flanges, which are available as standard. The same connecting flanges can also be used for a direct connection to air conditioning systems. For special applications honeycombs will provide sufficient ventilation. For larger chambers, additional fans can be installed in front of the honeycombs using connecting flanges. This will provide good air circulation. For larger chambers, additional fans can be installed in front of the honeycombs using connecting flanges. This will provide good air circulation.

Penetration Panels / Feed-Through Components

All feed-throughs into the chamber must be installed using special RF-shielded feed-through components, which guarantee high shielding attenuation characteristics over the whole specified frequency range. Since the requirements regarding durability may change, the feed-through components are normally screwed onto exchangeable penetration panels, which are bolted to the shielding panels. Penetration panels are available in standard sizes of 400 x 400mm and 500 x 500mm and they may be ordered separately, if required later.

Penetration Panels Anechoic Chambers

In rooms with absorber lining, an additional “C-type” frame is installed in front of the installation panels; this provides a larger installation space between shielding panels and absorbers, which is an advantage especially when the bending radius of cables would become critical. On the inside, the absorbers in the proximity of the penetration panels are installed on swelling covers or on mobile supports. Convenient access to the penetration panels is assured.

Coaxial Feed-Throughs

By design, coaxial feed-throughs in the installation panels are realized as “N-type” since they qualify for highest shielding attenuation characteristics. The conversion to all other types is performed on the inside and outside using suitable adapters. A threaded sealing cap is included in the delivery for coaxial feed-throughs, which are not used permanently.
Electric Installation in Shielded Rooms

The electrical installation in the chamber (starting from mains filter) may be performed either by our electricians or by the customer himself. If Frankonia performs the installation, the following standard equipment is included.

- Electrical distribution box with MCBs (over-current protection, e.g. 16A, 32A etc.), and RCDs (earth fault protection, e.g. 30mA tripping current)
- Chamber illumination with ceiling lamps
- Raised floor connection boxes with trunking or dado trunking around perimeter of walls with corresponding plug installation
- Emergency Panic switch
- Battery buffered emergency lighting above the door

Electric Installation in Chambers with Absorber Lining

a) Electric Distribution

In rooms with ferrite/hybrid absorber lining, the electrical distribution box is accessible from the inside of the chamber. The door of the distribution box is lined with ferrite absorbers as well. In rooms with pyramid absorber lining, the electrical distribution box is accessible from the outside of the chamber. A shielded door can be opened easily to gain access to all MCBs and RCDs.

b) Illumination

For anechoic chambers, the standard illumination consists of halogen lamps, which are preferably installed in the corner areas of the ceiling (in case of ferrite absorbers) or between the absorber tips (in case of pyramid absorbers). For large chambers (e.g. 10m test range), a lamp lift is available as an option, which allows lowering the lamps from the ceiling if bulbs must be changed. The cables to the lamps are installed behind the absorbers in metallic tubes.

c) Connection Boxes in the Raised Floor

If only ferrite absorbers are placed on the floor, a false floor is installed as described above, but lowered by the height of the ferrite absorbers. A 5.0mm thick felt covering would be laid out on the ferrite surface.

Floor for Shielded Rooms

In shielded rooms we install a so-called false floor above the floor shielding panels. This false floor consists of chipboard modules (panel thickness 38mm), size 600mm x 600mm, which are placed on metal supports of adjustable height. The internal floor level of the chamber is adjusted to the level of the doorsill; a step into the inside of the chamber is thus avoided. A PVC covering is glued onto the surface of the modules. The space between the floor shielding panels and the floor panels can be used for cable trunking. The standard version is suitable for a surface load of 30,000 N/m² and a lumped load of 5,000 N/panel. Special versions for higher loads are available.

Floor for Fully Anechoic Chambers

In case of anechoic chambers with a full absorber lining (with floor absorbers), several versions may be realized depending on the sizes and weights of the test specimen to be placed in the room. However, it is a general rule that only the absolutely necessary amount of material should be placed above the absorbers, since any material has an influence (even if minor) on the room characteristics. The following standard arrangement of anechoic chambers with pyramid absorber lining on the floor is available:

- Supported wooden floor over the whole surface, with individually removable panels
- Supported catwalk, fabricated of wood or plastic, in certain parts of the chamber
- Free walkways (without absorber lining) on the skirtings of the room and behind the turntable.

If only ferrite absorbers are placed on the floor, a false floor is installed as described above, but lowered by the height of the ferrite absorbers. A 5.0mm thick felt covering would be laid out on the ferrite surface.

Floor for Semi-Anechoic Chambers

In this case, the standard outfit is also a so-called false floor, but covered with an aluminium foil on the surface. Above these false floor panels, a ground plane of 2.0mm thick hot-galvanized sheet steel is installed, with a RF contact to the wall shielding panels. The electrical contact between the sheet steel panels is made via the aluminium foil of the false floor panels.

Lining of Inner Walls and Ceiling in Shielded Rooms

On request, the inner walls and the ceiling can be lined with material chosen by the customer. Soundproof linings are available for special application.
Absorber Lining

For the selection of the absorber material several things must be considered; the frequency range that have to be covered (including the requirements regarding chamber performance), the size of the place of installation as well as the respective costs.

You can choose ferrite, pyramid and hybrid absorbers.

The following differences between the absorber types must be taken into account:

- Reflectivity over a defined frequency range
- Dimensions (length) and consequently the space required
- Costs

Pyramid Absorbers

Pyramid absorbers are available in sizes (lengths) of 100mm to 2,500mm. The required length depends mainly on the wavelength of the lowest usable frequency specified for the anechoic chamber. The length decreases with increasing frequency. Pyramid absorbers of a size of ≥2,000mm are mainly used in chambers with measuring distances of up to 10.0m where the requirement for NSA correlation of better than ±4dB has to be fulfilled from 30MHz to 1GHz. In tests with frequencies starting at 80MHz (e.g. in immunity tests according to EN 61000-4-3) the respective requirements can be fulfilled already with a pyramid length of 75cm. For measurements in the range ≥1GHz, even sizes of 200 to 300mm are sufficient. Compared to ferrite absorbers, the pyramid absorbers offer the considerable advantage of lower price (depending on size), lower weight and their practically unlimited use up to the high GHz range.
Installation / Abbreviation of Absorbers

Non-Combustible Pyramid Absorbers in Thin-Film Technology

The FrankoSorb® RF absorber uses the so-called “thin film” technology that totally replaces the carbon in the conventional absorber, and foam is no longer required as the base support material. This gives the FrankoSorb® RF absorber the following significant advantages:

- High absorption capability
- No aging or drooping problems
- Fireproof
- Weatherproof
- Low ongoing ownership costs
- High repeatable performance characteristics
- Non-toxic waste

The mechanical realization of the absorber shape is independent from the absorbing function, realized by the resistance film. The shape of the absorber can be made of a lightweight non-combustible, weatherproof and otherwise suitable material. In comparison, the absorber film is very thin. Typically it has a thickness of 10 μm. Consequently, all the advantages of the “shape material” also holds for the complete absorber.

- The absorbing film is situated on the surface of the absorber and mounted directly on the shape material. Consequently, it can transfer absorbed energy very effectively to its surrounding and the absorber is capable of withstanding very high field strength.
- Transportation volume is low, because the hollow construction allows stacking.
- All the materials in the thin-film technology absorber is non-toxic and non-combustible according to DIN 4102 class A2.

Hybrid Absorbers

Hybrid Absorbers are a combination of ferrite absorbers with impedance matched pyramid absorbers installed in front of them. The hybrid absorbers combine the advantages of:

- Ferrite absorbers with good attenuation characteristics starting at 30MHz and being flat
- Short pyramid absorbers with good attenuation characteristics up to the high GHz range

Hybrid absorbers are a good solution for smaller rooms (e.g. 3m test range) with restricted external dimensions and frequency ranges from 30MHz up to approx. 20GHz.

Customized Solutions

A combined arrangement of pyramid and hybrid absorbers is also possible if the available space requires special solutions for best performance.

Abbreviation (name convention) of Absorber Types

FrankoSorb® Fxxx: Ferrite absorber
FrankoSorb® Fxxx: Thin-film pyramid absorber
FrankoSorb® Pxxx: Foam pyramid absorber
FrankoSorb® Hxxx: Hybrid absorber with thin-film pyramid absorber
FrankoSorb® HFxxx: Hybrid absorber with foam pyramid absorber

(xxx = height of the absorbers)

The suffixes B2 and A2 indicate the respective fire class of the absorbers. Non-combustible absorbors (fire class A2) can only be realized with thin-film pyramid absorbers.

Installation of the Absorbers

a) Ferrite Absorbers

The individual ferrite tiles are pre-assembled on chip wood boards, size 600mm x 600mm. For assembly in the chamber, a rail system is installed in a grid of 600mm, which is screwed to the double bent edges of the shielding panels. The absorber panels are then bolted to the rails. If the chamber is constructed as a fully anechoic chamber, including the floor, the same absorber panels are used for the floor. To protect the ferrites on the floor, the surface is covered with a 5.0mm thick felt covering. The floor height of the false floor will be at the same level as the doorsill.

b) Pyramid Absorbers

Pyramid absorbers are hung into a rail system construction, either directly (in case of thin-film absorbers) or after having been pre-assembled on supporting plates (in case of foam absorbers). In combinations with ferrite absorbers, the thin-film absorbers are installed using plastic threaded rods, and the foam absorbers using a “Velcro” fastening.

All types of installation allow easy disassembly of the absorbers, without damage.

Abbreviation (name convention) of Absorber Types

FrankoSorb® Fxxx: Ferrite absorber
FrankoSorb® Fxxx: Thin-film pyramid absorber
FrankoSorb® Pxxx: Foam pyramid absorber
FrankoSorb® Hxxx: Hybrid absorber with thin-film pyramid absorber
FrankoSorb® HFxxx: Hybrid absorber with foam pyramid absorber

(xxx = height of the absorbers)

The suffixes B2 and A2 indicate the respective fire class of the absorbers. Non-combustible absorbors (fire class A2) can only be realized with thin-film pyramid absorbers.

Installation of Hybrid Absorbers:

Step 1
Step 2
Step 3
Chambers - Illustrated Details

- Honeycombs for ventilation
- Steel beam construction
- Hybrid absorber for extension of the frequency range up to 18GHz
- Ferrite absorber frequency range 30 MHz to 1GHz
- Illumination (halogen lamps)
- Video system for chamber monitoring
- Power-, data-line filters
- Electrical distribution box
- Shielding panels made of galvanized sheet steel (thickness 2mm)
- RF-shielded door
- Penetration panel
- Raised floor
- Turntable
- Cable duct
- Groundplane made of galvanized sheet steel (thickness 2mm)
- Electrical outlet box
- Antenna support
Ultra Compact Chamber – UCC
for 1.0m Measuring Distance

Short Description

The UCC was designed as an alternative to GTEM-cells for pre-compliance measurements as well as for the fields of research and science. The walls and the ceiling of the chamber are lined completely with ferrite absorbers, and the rear wall next to the EUT has an additional hybrid absorber lining of 6m², which qualifies the chamber for measurements in the frequency range from 30MHz to 18GHz. The most important advantages, compared to GTEM-cells, are the facts that the personnel can walk into this chamber (more simple EUT setup), the practical test setup with corresponding cable feeding to peripheral equipment, as well as the possibility of taking larger test specimen into the chamber. The UCC can be used for pre-compliance radiated emission measurements and immunity tests according to the standard IEC/EN 61000-4-3 in 1.0m measuring distance. In addition, it is very well suited for pre-compliance measurements of automotive components according to DIN/ISO 11452-2 and EN 55025 (CISPR 25). If required, the UCC can also be used as a normal shielded room for conducted testing. Because of its small dimensions, the chamber can be placed in normal laboratories or office rooms.

Technical Data

External dimensions 4,280mm x 3,080mm x 2,550mm (LxWxH)
Frequency range 30MHz to 18GHz
Measuring distance 1m
Absorber lining:
- Walls and ceiling Ferrite absorbers, type F006
- Rear wall showing to EUT 6m² hybrid absorbers, type HF300
Floor 2m² ferrite absorbers between EUT and antenna
Emission measurements: Pre-compliance measurement
Immunity tests: Full compliance measurement acc. to IEC/EN 61000-4-3 for a measuring distance of 1.0m
Size of the uniform area acc. to IEC/EN 6100-4-3 0.5m x 0.5m
Max. deviation -0dB/+6dB at 4 of 4 measuring points

Standard Equipment

- 1 access door, 938 x 1,968mm
- 1 honeycomb insert for ventilation
- 1 mains filter 250WAC, 2x16A
- 1 penetration panel
- Feed-throughs: 4x "N", 4x "BNC" and 1x for fiber optics
- Electric installation
- Illumination
- Raised floor
- Absorber lining

Options

- 3 phase mains filter
- Signal and/or data line filter
- Fan
- Antenna tripod
- Video and/or audio system
- Verification of the chamber
- Measuring equipment
- Other extras
Short Description

The ACTC was developed especially for radiation testing of automotive components according to the standard DIN/ISO 11452-2 and EN 55025 (CISPR 25) and adjusted in all details to this objective. The chamber is lined with ferrite absorbers and approximately up to the middle of the chamber, with additional hybrid absorbers. In the standard version, the floor of the chamber consists of a normal false floor. As an option, this version can be delivered with an additional ground plane or with floor absorbers. The standard version of the ACTC is qualified for measurements in the frequency range from 30MHz to at least 18GHz. A (plug-in) contact-strip, to be permanently installed between the absorbers for assuring the electric contact of the ground plane of the testing table to the shielding panels, is available as standard as well as the testing table itself.

Technical Data

- **External dimensions**: 6,380mm x 5,480mm x 3,750mm (LxWxH)
- **Frequency range**: 30MHz to 18GHz
- **Measuring distance**: 1.0m

Absorber lining:
- **Long walls**: Ferrite absorbers F006 + 7.2m² hybrid absorbers H450 in the center
- **Short wall behind EUT**: Ferrite absorbers F006 + 9.9m² hybrid absorbers H450 in the center
- **Short wall behind antenna**: Ferrite absorbers F006 (>1GHz measurement with horn antennas)
- **Ceiling**: Ferrite absorbers F006 + 5.76m² hybrid absorbers H450 in the center
- **Floor (SAC)**: 7.2m² transportable hybrid absorbers H450
- **Floor (FAC)**: Ferrite absorbers F006 + 7.2m² hybrid absorbers H450 in the center

Emission measurements
- *Pre-Compliance measurements*
- *Full Compliance according to IEC/EN 61000-4-3 for a measuring distance of 3.0m*

Size of the uniform area: 1.5m x 1.5m

Max. deviation: -6dB + 6dB at 75% of 16 measuring points

Standard Equipment

- 1 access door, 938 x 1,968mm
- 2 honeycomb inserts for ventilation
- 1 mains filter, 250W, 2 x 32A
- 2 penetration panels
- Feed-throughs: 6x "N", 6x "BNC" and 2x for fiber optics
- Electric installation
- Illumination
- Raised floor
- Absorber lining

Options

- 3 phase mains filter
- Signal and/or data line filter
- Fan
- Antenna tripod
- Video and/or audio system
- Turntable
- Non-combustible hybrid absorbers
- Measurement of the chamber
- Measuring equipment
- Other extras

Short Description

The CHC is the optimal solution for immunity tests according to the standard IEC/EN 61000-4-3 for a measuring distance of 3.0m and offers in this size the best characteristics for pre-acceptance emission measurements. The installation of ferrite and partially of hybrid absorbers allows measurements in the frequency range from 30MHz to at least 18GHz. The CHC can be delivered optionally as a semi-anechoic chamber (with ground plane) or as a fully anechoic chamber (floor absorbers on the whole floor surface). For immunity tests, floor absorbers are required in each case between transmitting antenna and EUT and are therefore included in the standard delivery volume.

Technical Data

- **External dimensions**: 7,355mm x 3,755mm x 3,300mm (LxWxH)
- **Frequency range**: 30MHz to 18GHz
- **Measuring distance**: 3.0m

Absorber lining:
- **Long walls**: Ferrite absorbers F006 + 7.2m² hybrid absorbers H450 in the center
- **Short wall behind EUT**: Ferrite absorbers F006 + 9.9m² hybrid absorbers H450 in the center
- **Short wall behind antenna**: Ferrite absorbers F006 (>1GHz measurement with horn antennas)
- **Ceiling**: Ferrite absorbers F006 + 5.76m² hybrid absorbers H450 in the center
- **Floor (SAC)**: 7.2m² transportable hybrid absorbers H450
- **Floor (FAC)**: Ferrite absorbers F006 + 7.2m² hybrid absorbers H450 in the center

Emission measurements
- Pre-Compliance measurements
- Full Compliance according to IEC/EN 61000-4-3 for a measuring distance of 3.0m

Size of the uniform area: 1.5m x 1.5m

Max. deviation: -6dB + 6dB at 75% of 16 measuring points

Standard Equipment

- 1 access door, 938 x 1,968mm
- 2 honeycomb inserts for ventilation
- 1 mains filter, 250W, 2 x 32A
- 2 penetration panels
- Feed-throughs: 6x "N", 6x "BNC" and 2x for fiber optics
- Electric installation
- Illumination
- Raised floor
- Absorber lining

Options

- 3 phase mains filter
- Signal and/or data line filter
- Fan
- Antenna tripod
- Video and/or audio system
- Floor ground-plane
- Non-combustible hybrid absorbers
- Floor absorbers
- Measuring equipment
- Other extras
MIL COMPACT HYBRID CHAMBER – MIL CHC

Anechoic chamber for testing acc. to MIL-STD 461E

Short Description

The MIL-CHC has been designed to fulfill the requirements for radiated emission and immunity testing acc. to MIL-STD 461E. The below specified standard dimensions of the chamber are suitable for a width of the testing table up to 3.0m. Bigger dimensions are available on request. The standard version does already include the contact strip for the ground-plane of the testing table as well as the testing table itself.

Technical Data

- **External dimensions**: 4,880mm x 4,880mm x 3,000mm (LxWxH)
- **Frequency range**: 30MHz to 18GHz
- **Measuring distance**: 1.0m
- **Absorber lining:**
 - Walls and ceiling: Hybrid absorbers, type H600
 - Floor: Optional
- **Absorption at normal incidence:**
 - 80MHz-200MHz: ≥6dB
 - above 200MHz: ≥10dB

Standard Equipment

- 1 access door, 938 x 1,968mm
- 2 penetration panels
- Electric installation
- Turntable, 5.0m diameter, 8.0 to 10 honey comb inserts for ventilation
- Antenna Mast, 1-4m
- Controller for mast and turntable
- Absorber lining

Options

- 3 phase mains filter
- Signal and/or data line filter
- Fan
- Antenna tripod
- Video and/or audio system
- Non-combustible absorbers
- Other extras

AUTOMOTIVE VEHICLE TESTING CHAMBER – AVTC

Anechoic chamber for vehicle testing

Short Description

The AVTC is a standard chamber for radiated emission and immunity testing on vehicles and components acc. to CISPR 12/25 and ISO 11451-2 / ISO 11452-2.

The standard dimensions of the chamber allow vehicle testing up to a length of 5.5m (on turntable) and a measuring distance of 3.0m. With additional (optional available) floor absorbers it is simply possible to upgrade the chamber for emission measurements acc. to EN 55022 (CISPR 16–1–4) and immunity tests acc. to IEC 61000–4–3.

Technical data

- **External dimensions**: 11,480mm x 9,380mm x 6,000mm (LxWxH)
- **Frequency range**: 20MHz – 18GHz (optional 40GHz)
- **Measuring distance**: 3.0m
- **Absorber lining:**
 - Walls and ceiling: Hybrid absorbers, type H600
 - Floor: Optional
- **Absorption at normal incidence:**
 - 80MHz-200MHz: ≥6dB
 - above 200MHz: ≥10dB

Standard Equipment

- 1 access door, 938 x 1,968mm
- 1 sliding door, 3.5m x 3.5m
- 1 mains filter 440VAC, 4x32A
- 2 penetration panels
- Electric installation
- Measuring equipment
- Illumination
- Turntable, 5.0m diameter, 8.0 to 10 honey comb inserts for ventilation
- Raised floor
- Ground plane

Options

- Additional mains filters
- Signal and/or data line filters
- Non-combustible absorbers
- Antenna Mast, 1-4m
- Controller for mast and turntable
- Absorber lining
- 10 honey comb inserts for ventilation

Contact Strip

Testing Table
Short Description

The SAC-3/-5 Plus is a full-compliant semi anechoic chamber for a measuring distance of 3 or 5 meters. It’s dome shaped roof as well as it’s optimized absorber layout, with ferrite and partial hybrid absorber lining for the frequency range from 26MHz to 18GHz, leads to minimized reflections. Due to the relative short hybrid absorbers, the chamber can be smaller in its dimensions than a chamber lined with long pyramid absorbers. The SAC-3/-5 Plus delivers outstanding performances for both, NSA (±3dB) from 30MHz to 1GHz, and SVSWR (4dB) from 1GHz to 18GHz conforming to the site validation standard CISPR 16-1-4 for SVSWR. The standard version does already include the antenna mast for 1-4 m height scan, the turntable as well as their controller.

Type

<table>
<thead>
<tr>
<th>SAC-3 Plus</th>
<th>SAC-5 Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>External dimensions (L x W x H):</td>
<td>9.68m x 6.53m x 6.00m</td>
</tr>
<tr>
<td>Frequency range:</td>
<td>26MHz to 18GHz</td>
</tr>
<tr>
<td>Measuring distance:</td>
<td>3.0m</td>
</tr>
<tr>
<td>Absorber lining:</td>
<td>Full-lining with ferrite absorbers F006 and partial lining with additional hybrid absorbers H600 and H1000</td>
</tr>
<tr>
<td>Floor:</td>
<td>9m² transportable pyramid absorbers P600 for immunity tests</td>
</tr>
<tr>
<td>Emission measurement:</td>
<td>Full compliance acc. to EN 55022 and CISPR 22 class B (30 MHz to 1GHz)</td>
</tr>
<tr>
<td>Immunity tests:</td>
<td>Full compliance acc. to IEC/EN 61000-4-3</td>
</tr>
<tr>
<td>Max. deviation from NSA acc. to CISPR 16-1-4:</td>
<td>±4dB, optional ±3.5dB or ±3dB</td>
</tr>
<tr>
<td>Max. Site-SVSWR acc. to CISPR 16-1-4:</td>
<td>6dB, optional 5dB or 4dB</td>
</tr>
<tr>
<td>Size of test volume:</td>
<td>2.0m diameter / 2.0m height</td>
</tr>
<tr>
<td>Size of uniform area:</td>
<td>1.5m x 1.5m</td>
</tr>
<tr>
<td>Max. deviation:</td>
<td>0dB±6dB for 75% of 16 measuring points</td>
</tr>
</tbody>
</table>

Standard Equipment

- 1 access door, 1,088mm x 1,968mm (3-Plus) / 1,538 x 2,118mm (5-Plus)
- 4-6 honeycomb inserts for ventilation
- 1 mains filter, 250VAC, 2 x 32A
- 1 mains filter, 440V, 50/60Hz, 4 x 32A (SAC-5Plus)
- 2 penetration panels
- Feed-throughs: 6x "N", 6x "BNC" and 2x for fiber optics
- Electric installation
- Illumination
- Groundplane
- Raised floor
- Absorber lining
- Turntable
- Antenna mast
- Controller for antenna mast and turntable

Special Features

- Dome design (offers better RF properties, saves space e.g. for ventilation ducting)
- Reduced price (reduced shielding and absorber quantity)
- 3 versions for different performance levels in NSA and S-VSWR available

Options

- 3 phase mains filter
- Signal and/or data line filter
- Fan
- Antenna tripod
- Video and/or audio system
- Measurement of the chamber
- Measuring equipment
- Non-combustible hybrid absorbers
FAC’s are defined in CISPR 16-1-4 as “test site without ground-plane”. In comparison to a SAC (Semi-Anechoic-Chamber) it means that not only the walls and ceiling are lined with absorbers, but also the floor. The advantage of FAC’s is mainly, that reflections from the floor cannot occur and therefore an antenna height scan is not longer necessary, what may save a lot of measuring time. However, special constructions will be necessary (because of the lining with floor absorbers) for the test set-up of especially heavy and big EUT’s.

In general we can say that full-compliance FAC’s are bigger in size and higher in price, compared to SAC’s, but offers the big advantage of saving measuring time.

FULLY ANECHOIC CHAMBER – FAC-3 / FAC-5

Short Description

FAC’s are defined in CISPR 16-1-4 as “Test site without ground-plane”. In comparison to a SAC (Semi-Anechoic-Chamber) it means that not only the walls and ceiling are lined with absorbers, but also the floor. The advantage of FAC’s is mainly, that reflections from the floor cannot occur and therefore an antenna height scan is not longer necessary, what may save a lot of measuring time. However, special constructions will be necessary (because of the lining with floor absorbers) for the test set-up of especially heavy and big EUT’s.

In general we can say that full-compliance FAC’s are bigger in size and higher in price, compared to SAC’s, but offers the big advantage of saving measuring time.

<table>
<thead>
<tr>
<th>Type</th>
<th>FAC-3</th>
<th>FAC-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>External dimensions (L x W x H):</td>
<td>10.58m x 6.08m x 7.50m</td>
<td>12.08m x 8.18m x 7.50m</td>
</tr>
<tr>
<td>Frequency range:</td>
<td>26MHz to 18GHz</td>
<td></td>
</tr>
<tr>
<td>Measuring distance:</td>
<td>3.0m</td>
<td>5.0m</td>
</tr>
<tr>
<td>Absorber lining walls / ceiling / floor:</td>
<td>Full-lining with ferrite absorbers type F006 and partial lining with additional pyramid absorbers type H600/H1000</td>
<td>Full compliance acc. to CISPR 16-2-3</td>
</tr>
<tr>
<td>Emission measurement:</td>
<td>Full compliance acc. to CISPR 16-2-3</td>
<td></td>
</tr>
<tr>
<td>Max. deviation from FSMWA acc. to CISPR 16-1-4:</td>
<td>±4dB</td>
<td>±4dB</td>
</tr>
<tr>
<td>Max. Site-VSWR acc. to CISPR 16-1-4:</td>
<td>6dB</td>
<td>6dB</td>
</tr>
<tr>
<td>Size of test volume:</td>
<td>1.2m diameter x 1.2m height</td>
<td>2.0m diameter x 2.0m height</td>
</tr>
<tr>
<td>Immunity tests:</td>
<td>Full compliance acc. to IEC/EN 61000-4-3</td>
<td>Full compliance acc. to CISPR 16-2-3 & CISPR 22</td>
</tr>
<tr>
<td>Max. deviation:</td>
<td>-0dB/+2dB for 75% of 16 measuring points</td>
<td>-0dB/+6dB for 75% of 16 measuring points</td>
</tr>
</tbody>
</table>

Standard Equipment

- 1 access door, 938 x 1,968mm
- 6 honeycomb inserts for ventilation
- 1 mains filter, 440VAC, 4 x 32A
- 2 penetration panels
- Electric installation
- Illumination
- Wooden floor
- 1 wooden table
- Absorber lining
- 1 Turntable
- 1 Antenna mast
- 1 Controller for antenna mast and turntable
- Catwalk to the turntable
- Antenna mast
- Feed-throughs: 6x “N”, 4x “BNC” and 4x for fiber optics

Options

- 3 phase mains filter
- Signal and/or data line filter
- Fan
- Antenna tripod
- Video and/or audio system
- Measurement of the chamber
- Measuring equipment
- Non-combustible hybrid absorbers

ANECHOIC CHAMBERS FOR 10.0m MEASURING DISTANCE – SAC 10

Short Description

Anechoic chambers for 10.0m measuring distance are planned and realized almost exclusively at customers’ requirements. However for a first impression about size and performance of a SAC-10 we defined below 4 Standard-models with quiet zone diameter from 2.0m to 5.0m. The planning of an anechoic chamber should be made as early as possible, i.e. together with the planning of the building itself so that the interfaces can be defined in time, which will avoid later modifications. Typical interfaces are as follows: any kind of supply media, spaces reserved in the concrete floor for turntables / rolling test stands or driving pits for sliding gates, as well as a possible fastening of the room construction to the building construction. Further possible interfaces to emergency control / alarm systems, for example fire alarm and fire extinguishing systems, have to be considered, too. Such systems are normally not required when using our non-combustible pyramid absorbers in ”thin-film” technology (fire class A2).

<table>
<thead>
<tr>
<th>Type</th>
<th>SAC-10-2</th>
<th>SAC-10-3</th>
<th>SAC-10-4</th>
<th>SAC-10-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of quiet zone:</td>
<td>2.0m</td>
<td>3.0m</td>
<td>4.0m</td>
<td>5.0m</td>
</tr>
<tr>
<td>Dimensions of outer shielding: (L x W x H):</td>
<td>21.08m x 13.73m x 8.55m</td>
<td>21.68m x 13.73m x 8.55m</td>
<td>22.58m x 15.98m x 9.0m</td>
<td>23.48m x 16.58m x 9.0m</td>
</tr>
<tr>
<td>Frequency range:</td>
<td>26MHz to 18GHz</td>
<td>26MHz to 18GHz</td>
<td>26MHz to 18GHz</td>
<td>26MHz to 18GHz</td>
</tr>
<tr>
<td>Measuring distance:</td>
<td>3m and 10m</td>
<td>3m and 10m</td>
<td>3m and 10m</td>
<td>3m and 10m</td>
</tr>
<tr>
<td>Emission measurements:</td>
<td>Full compliance acc. to CISPR 16-2-3 and CISPR 22</td>
<td>Full compliance acc. to CISPR 16-2-3 and CISPR 22</td>
<td>Full compliance acc. to CISPR 16-2-3 and CISPR 22</td>
<td>Full compliance acc. to CISPR 16-2-3 and CISPR 22</td>
</tr>
<tr>
<td>Max. deviation from normalized site attenuation acc. to CISPR 16-1-4:</td>
<td>±3.5dB</td>
<td>±3.5dB</td>
<td>±3.5dB</td>
<td>±3.5dB</td>
</tr>
<tr>
<td>Immunity tests:</td>
<td>Full compliance acc. to IEC/EN 61000-4-3</td>
</tr>
<tr>
<td>Size of uniform area:</td>
<td>1.5m x 1.5m</td>
<td>1.5m x 1.5m</td>
<td>1.5m x 1.5m</td>
<td>1.5m x 1.5m</td>
</tr>
<tr>
<td>Max. deviation:</td>
<td>-0dB/+6dB for 75% of 16 measuring points</td>
</tr>
</tbody>
</table>

Standard Equipment

- 1 sliding door, 1 single leaf door
- 12-16 honeycomb inserts for ventilation
- 1 mains filter, 250VAC, 2 x 16A
- 1 mains filter, 440VAC, 4 x 32A
- Penetration panels
- Electric installation
- Illumination
- Groundplane
- False floor
- Absorber lining
- 1 Turntable
- 1 Controller for antenna mast and turntable
- Feed-throughs: “N”, “BNC” and fiber optics

Options

- 3 phase mains filter
- Signal and/or data line filter
- Fan
- Antenna tripod
- Video and/or audio system
- Measurement of the chamber
- Measuring equipment
- Non-combustible pyramid absorbers